Monday, 7 September 2020

Postdoc position available in Statistical Genomics

I am seeking someone with a track record in methods development for Statistical Genomics and an interest in Infectious Disease to join the group. The aim of the post is to conduct innovative research within the group's range of interests and to make use of the opportunities afforded by our outstanding collaborators. I would welcome candidates who wish to use the opportunity as a stepping stone to independent funding.

The postdoc will join a team with expertise in microbiology, genomics, evolution, population genetics and statistical inference. Responsibilities will include planning a research project and milestones with help and guidance from the group, preparing manuscripts for publication, keeping records of results and methods and tracking milestones, and disseminating results, including through academic conferences.

We will consider applicants who hold, or are close to completion of, a PhD/DPhil involving statistical methods development, and who have experience of large-scale statistical data analysis, evidence of originating and executing independent academic research ideas, excellent interpersonal skills and the ability to work closely with others in a team.

The position is advertised to 31 December 2021. The application deadline is noon on Thursday 1st October 2020. Visit the University recruitment page to apply.

Friday, 21 August 2020

Presentation: Genome-wide Association Studies of COVID-19

An online recording of the talk about Genome-wide Association Studies of COVID-19 at the UK Biobank 2020 meeting on 23 June 2020. The full conference is also online.


The group's research response to COVID-19

This is an update on the group's research response to the COVID-19 pandemic. As an infectious disease group we have been keen to contribute to the international research effort where we could be useful, while recognising the need to continue our research on other important infections where possible.

  • Bugbank. Thanks to a pre-existing collaboration between our group, Public Health England and UK Biobank, we were in a position to help rapidly facilitate COVID-19 research via SARS-CoV-2 PCR-based swab test results. Beginning mid-March, we worked to provide regular (usually weekly) updates of tests results, which were made available to all UK Biobank researchers beginning April 17th. This is one of several resources on COVID-19 linked to UK Biobank. Beginning in May we provided feeds to other cohorts: INTERVAL, COMPARE, Genes & Health and the NIHR BioResource. We provide updates on this work through the project website www.bugbank.uk. We have published a paper describing the dynamic data linkage in Microbial Genomics (press release). Key collaborators in this project are Jacob Armstrong (Big Data Institute) Naomi Allen (UK Biobank) and David Wyllie and Anne Marie O'Connell (Public Health England).


  • Epidemiological risk factors for COVID-19. Graduate student Nicolas Arning and I are developing an approach to quantify the effects of lifestyle and medical risk factors for COVID-19 in the UK Biobank that accounts for inherent uncertainty in which risk factors to consider. The new method employs the harmonic mean p-value, a model-averaging approach for big data that we published previously. We are in the process of evaluating the performance of the approach, comparing it to machine learning, and interpreting the results.

  • Antibody testing for the UK Government. Postdoc Justine Rudkin has been working in the lab with Derrick Crook, Sir John Bell and others to measure the efficacy of antibody tests for the UK Government. They have tested many hundreds of kits to establish the sensitivity and specificity of the tests to help evaluate the utility of a national testing programme. This work was crucial in demonstrating the limitations of early blood-spot based tests, and the credibility of subsequent generations of antibody tests. The work has been published in Wellcome Open Research.


Work on other infections that has continued during the lockdown. Postdoc Sarah Earle continues research into pathogen genetic risk factors for diseases including tuberculosis and meningococcal meningitis, while Steven Lin has continued to pursue work on hepatitis C virus genetics and epidemiology. Many of our close collaborators are infection doctors and they have of course been recalled to clinical duties. Laboratory work in the group has been severely disrupted, particularly several of Justine's Staphylococcus aureus projects. We are keen to pick up on those projects where we left off when the chance arrives.

Teaching: Online lectures and practical on Phylogenetics in Practice

On March 16th, we were in the interesting position of running an infectious disease course at the Big Data Institute on the day the national lockdown was announced in response to the COVID-19 pandemic. As a result, we were among the first in the university to do remote teaching, something Katrina Lythgoe and the rest of us had prepared for in anticipation of the lockdown a week earlier that never happened.

These are the two online lectures in the Health Data Sciences CDT that I gave called Phylogenetics in Practice.


The online practical, which applies phylogenetics approaches to understand the Zika virus epidemic, is implemented as a Docker container, and available here.

Presentation on identifying COVID-19 inpatients from Public Health England data

This is a presentation I gave at the COVID-19 Host Genetics Initiative meeting on 2nd July 2020 about using Public Health England's Second Generation Surveillance System to identify COVID-19 inpatients among SARS-CoV-2 positive individuals in England.

For further information, please see this bugbank blog post comparing inpatients identified using SGSS and Hospital Episode Statistics.

Monday, 20 July 2020

Royal Society Summer Science Exhibition 2020

This year the Royal Society's Summer Science Exhibition was online, and included highlights and updates from previous exhibitors, among them ours from 2018. This video was posted on Tuesday's session:

Friday, 20 March 2020

New paper: GenomegaMap for dN/dS in over 10,000 genomes

Published this week in Molecular Biology and Evolution, is a new paper joint with the CRyPTIC Consortium "GenomegaMap: within-species genome-wide dN/dS estimation from over 10,000 genomes".

The dN/dS ratio is a popular statistic in evolutionary genetics that quantifies the relative rates of protein-altering and non-protein-altering mutations. The rate is adjusted so that under neutral evolution - i.e. when the survival and reproductive advantage of all variants is the same - it equals 1. Typically, dN/dS is observed to be less than 1 meaning that new mutations tend to be disfavoured, implying they are harmful to survival or reproduction. Occasionally, dN/dS is observed to be greater than 1 meaning that new mutations are favoured, implying they provide some survival or reproductive advantage. The aim of estimating dN/dS is usually to identify mutations that provide an advantage.

Theoreticians are often critical of dN/dS because it is more of a descriptive statistic than a process-driven model of evolution. This overlooks the problem that currently available models make simplifying assumptions such as minimal interference between adjacent mutations within genes. These assumptions are not obviously appropriate in many species, including infectious micro-organisms, that exchange genetic material infrequently.

There are many methods for measuring dN/dS. This new paper overcomes two common problems:
  • It is fast no matter how many genomes are analysed together.
  • It is robust whether there is frequent genetic exchange (which causes phylogenetic methods to report spurious signals of advantageous mutation) or infrequent genetic exchange.
The paper includes detailed simulations that establish the validity of the approach, and it goes on to demonstrate how genomegaMap can detect advantageous mutations in 10,209 genomes of Mycobacterium tuberculosis, the bacterium that causes tuberculosis. The method reproduces known signals of advantageous mutations that make the bacteria resistant to antibiotics, and it discovers a new signal of advantageous mutations in a cold-shock protein called deaD or csdA.

Software that implements genomegaMap is available on Docker Hub and the source code and documentation are available on Git Hub.

With the steady rise of more and more genome sequences, the analysis of data becomes an increasing challenge even with modern computers, so it is hoped that this new method provides a useful way to exploit the opportunities in such large datasets to gain new insights into evolution.

Monday, 16 March 2020

Postdoc Available in Statistical Genetics

The closing date for applications for this post is noon on Wednesday 15th April 2020.

We are seeking an exceptional researcher with a track record in methods development for Statistical Genomics and an interest in Infectious Disease to join our group at the Big Data Institute. Our research focuses on Bacterial Genomics, Genome-Wide Association Studies and Population Genetics. The aim of the post is to conduct innovative research within the group's range of interests and to make use of the opportunities afforded by our outstanding collaborators. We welcome candidates who wish to use the opportunity as a stepping stone to independent funding.

The Oxford University Big Data Institute (BDI) is an interdisciplinary research centre aiming to develop, evaluate and deploy efficient methods for acquiring and analysing biomedical data at scale and for exploiting the opportunities arising from such studies. The Nuffield Department of Population Health, a partner in the BDI, contains world-renowned population health research groups and is an excellent environment for multi-disciplinary teaching and research.

The Postdoctoral Researcher in Statistical Genomics will join our team which has expertise in microbiology, genomics, evolution, population genetics and statistical inference. Responsibilities include planning a research project and milestones with help and guidance from the group, preparing manuscripts for publication, keeping records of results and methods and tracking milestones, and disseminating results.

To be considered, you need to hold, or be close to completion of, a PhD/DPhil involving statistical methods development. You also need experience of large-scale statistical data analysis, evidence of originating and executing your own academic research ideas and excellent interpersonal skills and the ability to work closely with others in a team.

For informal enquiries, please contact me.

Further details, including how to apply are here: https://my.corehr.com/pls/uoxrecruit/erq_jobspec_details_form.jobspec?p_id=145506